Internal
problem
ID
[4227]
Book
:
Advanced
Mathematica,
Book2,
Perkin
and
Perkin,
1992
Section
:
Chapter
11.3,
page
316
Problem
number
:
15
Date
solved
:
Tuesday, September 30, 2025 at 07:07:49 AM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(y(x),x)-2*x*y(x) = 2*x; ic:=[y(0) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],x]-2*x*y[x]==2*x; ic=y[0]==1; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*y(x) - 2*x + Derivative(y(x), x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)