Internal
problem
ID
[4229]
Book
:
Advanced
Mathematica,
Book2,
Perkin
and
Perkin,
1992
Section
:
Chapter
11.3,
page
316
Problem
number
:
17
Date
solved
:
Tuesday, September 30, 2025 at 07:07:52 AM
CAS
classification
:
[_quadrature]
With initial conditions
ode:=(x^3+1)*diff(y(x),x) = 3*x^2*tan(x); ic:=[y(0) = 1/2*Pi]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(1+x^3)*D[y[x],x]==3*x^2*Tan[x]; ic=y[0]==Pi/2; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-3*x**2*tan(x) + (x**3 + 1)*Derivative(y(x), x),0) ics = {y(0): pi/2} dsolve(ode,func=y(x),ics=ics)