Internal
problem
ID
[4301]
Book
:
An
introduction
to
the
solution
and
applications
of
differential
equations,
J.W.
Searl,
1966
Section
:
Chapter
4,
Ex.
4.2
Problem
number
:
1
Date
solved
:
Tuesday, September 30, 2025 at 07:16:41 AM
CAS
classification
:
[_separable]
ode:=x^2*(1+y(x)^2)*diff(y(x),x)+y(x)^2*(x^2+1) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(1+y[x]^2)*D[y[x],x]+y[x]^2*(x^2+1)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(y(x)**2 + 1)*Derivative(y(x), x) + (x**2 + 1)*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)