22.1.34 problem 34

Internal problem ID [4340]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number : 34
Date solved : Tuesday, September 30, 2025 at 07:20:39 AM
CAS classification : [_rational]

\begin{align*} 3 x^{2}+3 y^{2}+x \left (x^{2}+3 y^{2}+6 y\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.015 (sec). Leaf size: 21
ode:=3*x^2+3*y(x)^2+x*(x^2+3*y(x)^2+6*y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ c_1 +\frac {{\mathrm e}^{y} x \left (3 y^{2}+x^{2}\right )}{3} = 0 \]
Mathematica. Time used: 0.091 (sec). Leaf size: 26
ode=3*(x^2+y[x]^2)+x*(x^2+3*y[x]^2+6*y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [x^3 e^{y(x)}+3 x e^{y(x)} y(x)^2=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x**2 + x*(x**2 + 3*y(x)**2 + 6*y(x))*Derivative(y(x), x) + 3*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out