22.1.57 problem 58

Internal problem ID [4363]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number : 58
Date solved : Tuesday, September 30, 2025 at 07:23:29 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} \left (y^{3}+\frac {x}{y}\right ) y^{\prime }&=1 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 16
ode:=(y(x)^3+x/y(x))*diff(y(x),x) = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ -y c_1 +x -\frac {y^{4}}{3} = 0 \]
Mathematica. Time used: 0.077 (sec). Leaf size: 997
ode=(y[x]^3+x/y[x])*D[y[x],x]==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}-\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {6 c_1}{\sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}}}\\ y(x)&\to \frac {1}{2} \sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}+\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {6 c_1}{\sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}}}\\ y(x)&\to -\frac {1}{2} \sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}-\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}+\frac {6 c_1}{\sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}}}\\ y(x)&\to \frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}+\frac {6 c_1}{\sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}}}-\frac {1}{2} \sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}} \end{align*}
Sympy. Time used: 1.044 (sec). Leaf size: 1017
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x/y(x) + y(x)**3)*Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \text {Solution too large to show} \]