22.1.64 problem 65

Internal problem ID [4370]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number : 65
Date solved : Tuesday, September 30, 2025 at 07:23:38 AM
CAS classification : [_linear]

\begin{align*} \left (1+\cos \left (x \right )\right ) y^{\prime }&=\sin \left (x \right ) \left (\sin \left (x \right )+\sin \left (x \right ) \cos \left (x \right )-y\right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 16
ode:=(cos(x)+1)*diff(y(x),x) = sin(x)*(sin(x)+sin(x)*cos(x)-y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (x -\sin \left (x \right )+c_1 \right ) \left (1+\cos \left (x \right )\right ) \]
Mathematica. Time used: 0.057 (sec). Leaf size: 24
ode=(1+Cos[x])*D[y[x],x]==Sin[x]*( Sin[x]+Sin[x]*Cos[x]-y[x] ); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \cos ^2\left (\frac {x}{2}\right ) (2 x-2 \sin (x)+c_1) \end{align*}
Sympy. Time used: 93.743 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((cos(x) + 1)*Derivative(y(x), x) - (-y(x) + sin(x)*cos(x) + sin(x))*sin(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \cos {\left (x \right )} + C_{1} + x \cos {\left (x \right )} + x - 2 \sin {\left (\frac {x}{2} \right )} \cos {\left (\frac {x}{2} \right )} \cos {\left (x \right )} - 2 \sin {\left (\frac {x}{2} \right )} \cos {\left (\frac {x}{2} \right )} \]