22.1.109 problem 132

Internal problem ID [4415]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number : 132
Date solved : Tuesday, September 30, 2025 at 07:28:22 AM
CAS classification : [_rational]

\begin{align*} y+3 x^{4} y^{2}+\left (x +2 x^{2} y^{3}\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.011 (sec). Leaf size: 357
ode:=y(x)+3*x^4*y(x)^2+(x+2*x^2*y(x)^3)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\left (-{\left (\left (9+\sqrt {12 x^{11}-36 c_1 \,x^{8}+36 c_1^{2} x^{5}-12 c_1^{3} x^{2}+81}\right ) x^{2}\right )}^{{2}/{3}}+x^{2} 12^{{1}/{3}} \left (x^{3}-c_1 \right )\right ) 12^{{1}/{3}}}{6 {\left (\left (9+\sqrt {12 x^{11}-36 c_1 \,x^{8}+36 c_1^{2} x^{5}-12 c_1^{3} x^{2}+81}\right ) x^{2}\right )}^{{1}/{3}} x} \\ y &= -\frac {\left (\left (1+i \sqrt {3}\right ) {\left (\left (9+\sqrt {12 x^{11}-36 c_1 \,x^{8}+36 c_1^{2} x^{5}-12 c_1^{3} x^{2}+81}\right ) x^{2}\right )}^{{2}/{3}}+2^{{2}/{3}} x^{2} \left (x^{3}-c_1 \right ) \left (i 3^{{5}/{6}}-3^{{1}/{3}}\right )\right ) 3^{{1}/{3}} 2^{{2}/{3}}}{12 {\left (\left (9+\sqrt {12 x^{11}-36 c_1 \,x^{8}+36 c_1^{2} x^{5}-12 c_1^{3} x^{2}+81}\right ) x^{2}\right )}^{{1}/{3}} x} \\ y &= \frac {\left (\left (i \sqrt {3}-1\right ) {\left (\left (9+\sqrt {12 x^{11}-36 c_1 \,x^{8}+36 c_1^{2} x^{5}-12 c_1^{3} x^{2}+81}\right ) x^{2}\right )}^{{2}/{3}}+2^{{2}/{3}} x^{2} \left (x^{3}-c_1 \right ) \left (i 3^{{5}/{6}}+3^{{1}/{3}}\right )\right ) 3^{{1}/{3}} 2^{{2}/{3}}}{12 {\left (\left (9+\sqrt {12 x^{11}-36 c_1 \,x^{8}+36 c_1^{2} x^{5}-12 c_1^{3} x^{2}+81}\right ) x^{2}\right )}^{{1}/{3}} x} \\ \end{align*}
Mathematica. Time used: 60.08 (sec). Leaf size: 358
ode=(y[x]+3*x^4*y[x]^2)+(x+2*x^2*y[x]^3)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\sqrt [3]{2} \left (-x^4+c_1 x\right )}{\sqrt [3]{27 x^2+\sqrt {729 x^4+108 x^3 \left (x^4-c_1 x\right ){}^3}}}+\frac {\sqrt [3]{27 x^2+\sqrt {729 x^4+108 x^3 \left (x^4-c_1 x\right ){}^3}}}{3 \sqrt [3]{2} x}\\ y(x)&\to \frac {\left (1+i \sqrt {3}\right ) \left (x^4-c_1 x\right )}{2^{2/3} \sqrt [3]{27 x^2+\sqrt {729 x^4+108 x^3 \left (x^4-c_1 x\right ){}^3}}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 x^2+\sqrt {729 x^4+108 x^3 \left (x^4-c_1 x\right ){}^3}}}{6 \sqrt [3]{2} x}\\ y(x)&\to \frac {\left (1-i \sqrt {3}\right ) \left (x^4-c_1 x\right )}{2^{2/3} \sqrt [3]{27 x^2+\sqrt {729 x^4+108 x^3 \left (x^4-c_1 x\right ){}^3}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 x^2+\sqrt {729 x^4+108 x^3 \left (x^4-c_1 x\right ){}^3}}}{6 \sqrt [3]{2} x} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x**4*y(x)**2 + (2*x**2*y(x)**3 + x)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out