22.1.129 problem 152

Internal problem ID [4435]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number : 152
Date solved : Tuesday, September 30, 2025 at 07:32:06 AM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} y^{\prime }-6 x \,{\mathrm e}^{x -y}-1&=0 \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 15
ode:=diff(y(x),x)-6*x*exp(x-y(x))-1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \ln \left ({\mathrm e}^{x} \left (3 x^{2}+c_1 \right )\right ) \]
Mathematica. Time used: 0.256 (sec). Leaf size: 16
ode=D[y[x],x]-6*x*Exp[x-y[x]]-1==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x+\log \left (3 x^2+c_1\right ) \end{align*}
Sympy. Time used: 0.379 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*x*exp(x - y(x)) + Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \log {\left (\left (C_{1} + 3 x^{2}\right ) e^{x} \right )} \]