23.1.28 problem 23

Internal problem ID [4635]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 23
Date solved : Tuesday, September 30, 2025 at 07:37:39 AM
CAS classification : [_linear]

\begin{align*} y^{\prime }&=2 \csc \left (2 x \right ) \left (\sin \left (x \right )^{3}+y\right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 13
ode:=diff(y(x),x) = 2*csc(2*x)*(sin(x)^3+y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\sin \left (x \right )+c_1 \tan \left (x \right ) \]
Mathematica. Time used: 0.03 (sec). Leaf size: 15
ode=D[y[x],x]==2*Csc[2*x]*(Sin[x]^3+y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\sin (x)+c_1 \tan (x) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*(y(x) + sin(x)**3)*csc(2*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out