23.1.43 problem 38 (a)

Internal problem ID [4650]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 38 (a)
Date solved : Tuesday, September 30, 2025 at 07:38:09 AM
CAS classification : [_linear]

\begin{align*} y^{\prime }&=f \left (x \right ) f^{\prime }\left (x \right )+f^{\prime }\left (x \right ) y \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 15
ode:=diff(y(x),x) = f(x)*diff(f(x),x)+diff(f(x),x)*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -f \left (x \right )-1+{\mathrm e}^{f \left (x \right )} c_1 \]
Mathematica. Time used: 0.03 (sec). Leaf size: 18
ode=D[y[x],x]==f[x]*D[ f[x],x] + D[ f[x],x]*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -f(x)+c_1 e^{f(x)}-1 \end{align*}
Sympy. Time used: 0.691 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
f = Function("f") 
ode = Eq(-f(x)*Derivative(f(x), x) - y(x)*Derivative(f(x), x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{f{\left (x \right )}} - f{\left (x \right )} - 1 \]