4.3.74 Problems 7301 to 7400

Table 4.511: Second order ode

#

ODE

Mathematica

Maple

Sympy

20752

\[ {} y^{\prime \prime }+\left (3 \sin \left (x \right )-\cot \left (x \right )\right ) y^{\prime }+2 \sin \left (x \right )^{2} y = 0 \]

20753

\[ {} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

20754

\[ {} x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-2 y = x^{2} \]

20755

\[ {} x^{2} y^{\prime \prime }+y^{\prime }-\left (x^{2}+1\right ) y = {\mathrm e}^{-x} \]

20756

\[ {} \left (x +2\right ) y^{\prime \prime }-\left (2 x +5\right ) y^{\prime }+2 y = {\mathrm e}^{x} \left (1+x \right ) \]

20757

\[ {} y^{\prime \prime }+y = x \]

20758

\[ {} y^{\prime \prime }+y = \csc \left (x \right ) \]

20759

\[ {} y^{\prime \prime }+4 y = 4 \tan \left (2 x \right ) \]

20760

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (1-x \right )^{2} \]

20761

\[ {} y^{\prime \prime }-y = \frac {2}{{\mathrm e}^{x}+1} \]

20762

\[ {} -\left (x^{2}+1\right ) y-4 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = x \]

20763

\[ {} 2 \left (1+x \right ) y-2 x \left (1+x \right ) y^{\prime }+x^{2} y^{\prime \prime } = -4 x^{3} \]

20764

\[ {} x y^{\prime }-y = \left (x -1\right ) \left (y^{\prime \prime }-x +1\right ) \]

20765

\[ {} \left (x y^{\prime }-y\right )^{2}+x^{2} y y^{\prime \prime } = 0 \]

20766

\[ {} 2 \left (1+x \right ) y-2 x \left (1+x \right ) y^{\prime }+x^{2} y^{\prime \prime } = x^{3} \]

20767

\[ {} \left (x^{2}+a \right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

20768

\[ {} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

20769

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = x^{3}+3 x \]

20770

\[ {} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

20771

\[ {} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

20772

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\frac {a^{2} y}{-x^{2}+1} = 0 \]

20773

\[ {} \left (2 x -1\right ) y^{\prime \prime }-2 y^{\prime }+\left (3-2 x \right ) y = 2 \,{\mathrm e}^{x} \]

20774

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 8 x^{3} \]

20775

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+5\right ) y = x \,{\mathrm e}^{-\frac {x^{2}}{2}} \]

20776

\[ {} x \left (-x^{2}+1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) \left (3 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

20777

\[ {} y^{\prime \prime }+\left (1-\frac {2}{x^{2}}\right ) y = x^{2} \]

20778

\[ {} \left (x^{3}-2 x^{2}\right ) y^{\prime \prime }+2 x^{2} y^{\prime }-12 \left (x -2\right ) y = 0 \]

20779

\[ {} x y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+\left (x +2\right ) y = \left (x -2\right ) {\mathrm e}^{2 x} \]

20780

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

20781

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

20782

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

20783

\[ {} x y^{\prime \prime } \left (x \cos \left (x \right )-2 \sin \left (x \right )\right )+\left (x^{2}+2\right ) y^{\prime } \sin \left (x \right )-2 y \left (x \sin \left (x \right )+\cos \left (x \right )\right ) = 0 \]

20784

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

20785

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-\left (4 x^{2}-3 x -5\right ) y^{\prime }+\left (4 x^{2}-6 x -5\right ) y = {\mathrm e}^{2 x} \]

20786

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime } = m^{2} y \]

20787

\[ {} y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

20788

\[ {} x y^{\prime \prime }+\left (x^{2}+1\right ) y^{\prime }+2 x y = 2 x \]

20789

\[ {} \left (x +2\right ) y^{\prime \prime }-\left (2 x +5\right ) y^{\prime }+2 y = {\mathrm e}^{x} \left (1+x \right ) \]

20790

\[ {} -y+x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = x \left (-x^{2}+1\right )^{{3}/{2}} \]

20791

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

20813

\[ {} 2 y^{\prime \prime }+9 y^{\prime }-18 y = 0 \]

20817

\[ {} y^{\prime \prime }+n^{2} y = \sec \left (n x \right ) \]

20819

\[ {} y^{\prime \prime }-4 y^{\prime }+y = a \cos \left (2 x \right ) \]

20822

\[ {} y^{\prime \prime }-2 y^{\prime }+y = x \sin \left (x \right ) \]

20824

\[ {} y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

20825

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 2 \sinh \left (2 x \right ) \]

20826

\[ {} y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

20827

\[ {} y^{\prime \prime }-2 y^{\prime }+y = x \sin \left (x \right ) \]

20863

\[ {} x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

20867

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 2 x^{2} \]

20869

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

20871

\[ {} \left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

20873

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+y^{\prime } \left (1+x \right )+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

20874

\[ {} 2 x^{2} y y^{\prime \prime }+4 y^{2} = x^{2} {y^{\prime }}^{2}+2 y y^{\prime } x \]

20875

\[ {} x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

20876

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

20880

\[ {} \sqrt {x}\, y^{\prime \prime }+2 x y^{\prime }+3 y = x \]

20881

\[ {} 2 x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (3+7 x \right ) y^{\prime }-3 y = x^{2} \]

20882

\[ {} 2 x^{2} \cos \left (y\right ) y^{\prime \prime }-2 x^{2} \sin \left (y\right ) {y^{\prime }}^{2}+x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = \ln \left (x \right ) \]

20883

\[ {} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2}-3 y^{2} = 0 \]

20884

\[ {} y+3 x y^{\prime }+2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

20885

\[ {} y+x y^{\prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

20887

\[ {} y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

20888

\[ {} y^{\prime \prime } = \sec \left (x \right )^{2} \]

20889

\[ {} y^{\prime }+{y^{\prime }}^{3}+y^{\prime \prime } = 0 \]

20890

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

20891

\[ {} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime } = 0 \]

20892

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = \ln \left (y\right ) y^{2} \]

20893

\[ {} y^{\prime }-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }} \]

20894

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

20896

\[ {} x^{4} y^{\prime \prime } = \left (y-x y^{\prime }\right )^{3} \]

20897

\[ {} 2 y^{\prime }+x y^{\prime \prime } = -y^{2}+x^{2} y^{\prime } \]

20898

\[ {} x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

20899

\[ {} \sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

20900

\[ {} -y+x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = x \left (-x^{2}+1\right )^{{3}/{2}} \]

20901

\[ {} \left (x +2\right ) y^{\prime \prime }-\left (2 x +5\right ) y^{\prime }+2 y = {\mathrm e}^{x} \left (1+x \right ) \]

20902

\[ {} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-\left (1-\cot \left (x \right )\right ) y = {\mathrm e}^{x} \sin \left (x \right ) \]

20903

\[ {} \left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

20904

\[ {} y^{\prime \prime }+\left (1+\frac {2 \cot \left (x \right )}{x}-\frac {2}{x^{2}}\right ) y = x \cos \left (x \right ) \]

20905

\[ {} x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

20906

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

20907

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{4}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

20908

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+y = 0 \]

20909

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

20910

\[ {} y^{\prime \prime }-\left (8 \,{\mathrm e}^{2 x}+2\right ) y^{\prime }+4 \,{\mathrm e}^{4 x} y = {\mathrm e}^{6 x} \]

20911

\[ {} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+\frac {\csc \left (x \right )^{2} y}{2} = 0 \]

20912

\[ {} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

20913

\[ {} x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{3} \sin \left (x^{2}\right ) \]

20914

\[ {} y^{\prime \prime } \cos \left (x \right )+y^{\prime } \sin \left (x \right )-2 \cos \left (x \right )^{3} y = 2 \cos \left (x \right )^{5} \]

20915

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+y^{\prime } \left (1+x \right )+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

20916

\[ {} x y^{\prime \prime }+\left (x -1\right ) y^{\prime }-y = x^{2} \]

20917

\[ {} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+6 x +2\right ) y^{\prime }-4 y = 0 \]

20918

\[ {} y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

20919

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} {\mathrm e}^{x} \]

20920

\[ {} 2 \left (1+x \right ) y-2 x \left (1+x \right ) y^{\prime }+x^{2} y^{\prime \prime } = x^{3} \]

20921

\[ {} y^{\prime \prime }+\left (1-\cot \left (x \right )\right ) y^{\prime }-y \cot \left (x \right ) = \sin \left (x \right )^{2} \]

20953

\[ {} 20 y-9 y^{\prime }+y^{\prime \prime } = 0 \]

20954

\[ {} y^{\prime \prime }-3 y^{\prime }+4 y = 0 \]

20955

\[ {} 8 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

20956

\[ {} x^{\prime \prime }-x^{\prime }-6 x = 0 \]