23.1.128 problem 132

Internal problem ID [4735]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 132
Date solved : Tuesday, September 30, 2025 at 08:20:40 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`]]

\begin{align*} y^{\prime }&=x +{\mathrm e}^{y} \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 34
ode:=diff(y(x),x) = x+exp(y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{2}}{2}+\ln \left (2\right )-\ln \left (i \sqrt {\pi }\, \sqrt {2}\, \operatorname {erf}\left (\frac {i \sqrt {2}\, x}{2}\right )-2 c_1 \right ) \]
Mathematica. Time used: 0.311 (sec). Leaf size: 40
ode=D[y[x],x]==x+Exp[y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \left (x^2-2 \log \left (-\sqrt {\frac {\pi }{2}} \text {erfi}\left (\frac {x}{\sqrt {2}}\right )-c_1\right )\right ) \end{align*}
Sympy. Time used: 1.195 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x - exp(y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \log {\left (\frac {\sqrt {e^{x^{2}}}}{C_{1} - \int \sqrt {e^{x^{2}}}\, dx} \right )} \]