23.1.172 problem 172

Internal problem ID [4779]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 172
Date solved : Tuesday, September 30, 2025 at 08:34:27 AM
CAS classification : [_rational, _Riccati]

\begin{align*} x y^{\prime }&=a \,x^{n}+b y+c y^{2} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 164
ode:=x*diff(y(x),x) = a*x^n+b*y(x)+c*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\sqrt {a c}\, \left (\operatorname {BesselY}\left (\frac {b +n}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right ) c_1 +\operatorname {BesselJ}\left (\frac {b +n}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right )\right ) x^{\frac {n}{2}}-b \left (\operatorname {BesselY}\left (\frac {b}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right ) c_1 +\operatorname {BesselJ}\left (\frac {b}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right )\right )}{c \left (\operatorname {BesselY}\left (\frac {b}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right ) c_1 +\operatorname {BesselJ}\left (\frac {b}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right )\right )} \]
Mathematica. Time used: 0.189 (sec). Leaf size: 402
ode=x*D[y[x],x]==a*x^n+b*y[x]+c*y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\sqrt {a} \sqrt {c} x^{n/2} \left (-2 \operatorname {BesselJ}\left (\frac {b}{n}-1,\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )+c_1 \left (\operatorname {BesselJ}\left (1-\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )-\operatorname {BesselJ}\left (-\frac {b+n}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )\right )\right )-b c_1 \operatorname {BesselJ}\left (-\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )}{2 c \left (\operatorname {BesselJ}\left (\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )+c_1 \operatorname {BesselJ}\left (-\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )\right )}\\ y(x)&\to -\frac {-\sqrt {a} \sqrt {c} x^{n/2} \operatorname {BesselJ}\left (1-\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )+\sqrt {a} \sqrt {c} x^{n/2} \operatorname {BesselJ}\left (-\frac {b+n}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )+b \operatorname {BesselJ}\left (-\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )}{2 c \operatorname {BesselJ}\left (-\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a*x**n - b*y(x) - c*y(x)**2 + x*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (a*x**n + b*y(x) + c*y(x)**2)/x cannot be solved by the factorable group method