Internal
problem
ID
[4792]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
1.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
FIRST
DEGREE,
page
223
Problem
number
:
185
Date
solved
:
Tuesday, September 30, 2025 at 08:37:45 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
ode:=x*diff(y(x),x)+(a+b*x^n*y(x))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]+(a+b*x^n*y[x])y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") n = symbols("n") y = Function("y") ode = Eq(x*Derivative(y(x), x) + (a + b*x**n*y(x))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)