23.1.206 problem 202

Internal problem ID [4813]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 202
Date solved : Tuesday, September 30, 2025 at 08:42:22 AM
CAS classification : [`y=_G(x,y')`]

\begin{align*} x y^{\prime }+\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right )&=0 \end{align*}
Maple. Time used: 0.016 (sec). Leaf size: 16
ode:=x*diff(y(x),x)+(sin(y(x))-3*x^2*cos(y(x)))*cos(y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \arctan \left (\frac {x^{3}+2 c_1}{x}\right ) \]
Mathematica. Time used: 1.052 (sec). Leaf size: 53
ode=x*D[y[x],x]+(Sin[y[x]]-3*x^2*Cos[y[x]])*Cos[y[x]]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \arctan \left (x^2+\frac {c_1}{2 x}\right )\\ y(x)&\to -\frac {1}{2} \pi \sqrt {\frac {1}{x^2}} x\\ y(x)&\to \frac {1}{2} \pi \sqrt {\frac {1}{x^2}} x \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + (-3*x**2*cos(y(x)) + sin(y(x)))*cos(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (3*x**2*cos(2*y(x)) + 3*x**2 - sin(2*y(x)))/(2*x) cannot be solved by the factorable group method