23.1.216 problem 212

Internal problem ID [4823]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 212
Date solved : Tuesday, September 30, 2025 at 08:43:04 AM
CAS classification : [_separable]

\begin{align*} x y^{\prime }+\tan \left (y\right )&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 12
ode:=x*diff(y(x),x)+tan(y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \arcsin \left (\frac {1}{x c_1}\right ) \]
Mathematica. Time used: 12.816 (sec). Leaf size: 19
ode=x*D[y[x],x]+Tan[y[x]]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \arcsin \left (\frac {e^{c_1}}{x}\right )\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.195 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + tan(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \pi - \operatorname {asin}{\left (\frac {C_{1}}{x} \right )}, \ y{\left (x \right )} = \operatorname {asin}{\left (\frac {C_{1}}{x} \right )}\right ] \]