Internal
problem
ID
[4841]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
1.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
FIRST
DEGREE,
page
223
Problem
number
:
230
Date
solved
:
Tuesday, September 30, 2025 at 08:43:58 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=(1+x)*diff(y(x),x) = 1+y(x)+(1+x)*(1+y(x))^(1/2); dsolve(ode,y(x), singsol=all);
ode=(1+x)*D[y[x],x]==(1+y[x])+(1+x)*Sqrt[1+y[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x - 1)*sqrt(y(x) + 1) + (x + 1)*Derivative(y(x), x) - y(x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)