23.1.246 problem 241

Internal problem ID [4853]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 241
Date solved : Tuesday, September 30, 2025 at 08:45:03 AM
CAS classification : [_separable]

\begin{align*} 2 x y^{\prime }&=y \left (1+y^{2}\right ) \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 41
ode:=2*x*diff(y(x),x) = y(x)*(1+y(x)^2); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {\left (-x +c_1 \right ) x}}{-x +c_1} \\ y &= \frac {\sqrt {\left (-x +c_1 \right ) x}}{-c_1 +x} \\ \end{align*}
Mathematica. Time used: 0.293 (sec). Leaf size: 82
ode=2*x*D[y[x],x]==y[x]*(1+y[x]^2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {i e^{c_1} \sqrt {x}}{\sqrt {-1+e^{2 c_1} x}}\\ y(x)&\to \frac {i e^{c_1} \sqrt {x}}{\sqrt {-1+e^{2 c_1} x}}\\ y(x)&\to 0\\ y(x)&\to -i\\ y(x)&\to i \end{align*}
Sympy. Time used: 0.998 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) - (y(x)**2 + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {- \frac {x}{x e^{2 C_{1}} - 1}} e^{C_{1}}, \ y{\left (x \right )} = \sqrt {- \frac {x}{x e^{2 C_{1}} - 1}} e^{C_{1}}\right ] \]