23.1.250 problem 244 (b)

Internal problem ID [4857]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 244 (b)
Date solved : Tuesday, September 30, 2025 at 08:45:16 AM
CAS classification : [_separable]

\begin{align*} 2 x y^{\prime }+4 y+a -\sqrt {a^{2}-4 b -4 c y}&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 36
ode:=2*x*diff(y(x),x)+4*y(x)+a-(a^2-4*b-4*c*y(x))^(1/2) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \ln \left (x \right )-2 \int _{}^{y}\frac {1}{-4 \textit {\_a} -a +\sqrt {-4 \textit {\_a} c +a^{2}-4 b}}d \textit {\_a} +c_1 = 0 \]
Mathematica. Time used: 0.491 (sec). Leaf size: 181
ode=2*x*D[y[x],x]+4*y[x]+a-Sqrt[a^2-4*b- 4*c*y[x]]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\frac {c \arctan \left (\frac {2 \sqrt {a^2-4 (\text {$\#$1} c+b)}+c}{\sqrt {-4 a^2-4 a c+16 b-c^2}}\right )}{2 \sqrt {-4 a^2-4 a c+16 b-c^2}}-\frac {1}{4} \log \left (c \left (\sqrt {a^2-4 (\text {$\#$1} c+b)}-4 \text {$\#$1}-a\right )\right )\&\right ]\left [\frac {\log (x)}{2}+c_1\right ]\\ y(x)&\to \frac {1}{8} \left (-\sqrt {(2 a+c)^2-16 b}-2 a-c\right )\\ y(x)&\to \frac {1}{8} \left (\sqrt {(2 a+c)^2-16 b}-2 a-c\right ) \end{align*}
Sympy. Time used: 2.648 (sec). Leaf size: 192
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(a + 2*x*Derivative(y(x), x) - sqrt(a**2 - 4*b - 4*c*y(x)) + 4*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \begin {cases} - \frac {c \operatorname {atan}{\left (\frac {\frac {c}{2} + \sqrt {a^{2} - 4 b - 4 c y{\left (x \right )}}}{\sqrt {- a^{2} - a c + 4 b - \frac {c^{2}}{4}}} \right )}}{4 \sqrt {- a^{2} - a c + 4 b - \frac {c^{2}}{4}}} + \frac {\log {\left (a c - c \sqrt {a^{2} - 4 b - 4 c y{\left (x \right )}} + 4 c y{\left (x \right )} \right )}}{4} & \text {for}\: c \neq 0 \wedge 4 a^{2} + 4 a c - 16 b + c^{2} \neq 0 \\\frac {c}{4 \left (\frac {c}{2} + \sqrt {a^{2} - 4 b - 4 c y{\left (x \right )}}\right )} + \frac {\log {\left (a c - c \sqrt {a^{2} - 4 b - 4 c y{\left (x \right )}} + 4 c y{\left (x \right )} \right )}}{4} & \text {for}\: c \neq 0 \\\frac {\log {\left (a - \sqrt {a^{2} - 4 b} + 4 y{\left (x \right )} \right )}}{4} & \text {otherwise} \end {cases} = C_{1} - \frac {\log {\left (x \right )}}{2} \]