23.1.292 problem 284 (a)

Internal problem ID [4899]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 284 (a)
Date solved : Tuesday, September 30, 2025 at 08:56:00 AM
CAS classification : [_linear]

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+a -x y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 18
ode:=(x^2+1)*diff(y(x),x)+a-x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sqrt {x^{2}+1}\, c_1 -x a \]
Mathematica. Time used: 0.037 (sec). Leaf size: 22
ode=(1+x^2)*D[y[x],x]+a-x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -a x+c_1 \sqrt {x^2+1} \end{align*}
Sympy. Time used: 1.052 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a - x*y(x) + (x**2 + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sqrt {x^{2} + 1} - a x \]