23.1.304 problem 294

Internal problem ID [4911]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 294
Date solved : Tuesday, September 30, 2025 at 08:56:22 AM
CAS classification : [_linear]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+\cos \left (x \right )&=2 x y \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=(-x^2+1)*diff(y(x),x)+cos(x) = 2*x*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\sin \left (x \right )+c_1}{x^{2}-1} \]
Mathematica. Time used: 0.022 (sec). Leaf size: 26
ode=(1-x^2)*D[y[x],x]+Cos[x]==2*x*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\int _1^x\cos (K[1])dK[1]+c_1}{x^2-1} \end{align*}
Sympy. Time used: 0.210 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x) + (1 - x**2)*Derivative(y(x), x) + cos(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + \sin {\left (x \right )}}{x^{2} - 1} \]