23.1.308 problem 298 (a)

Internal problem ID [4915]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 298 (a)
Date solved : Tuesday, September 30, 2025 at 08:56:30 AM
CAS classification : [_separable]

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=1+y^{2} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 9
ode:=(x^2+1)*diff(y(x),x) = 1+y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \tan \left (\arctan \left (x \right )+c_1 \right ) \]
Mathematica. Time used: 0.172 (sec). Leaf size: 55
ode=(1+x^2)*D[y[x],x]==(1+y[x]^2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1]^2+1}dK[1]\&\right ]\left [\int _1^x\frac {1}{K[2]^2+1}dK[2]+c_1\right ]\\ y(x)&\to -i\\ y(x)&\to i \end{align*}
Sympy. Time used: 0.164 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**2 + 1)*Derivative(y(x), x) - y(x)**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \tan {\left (C_{1} + \operatorname {atan}{\left (x \right )} \right )} \]