Internal
problem
ID
[4954]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
1.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
FIRST
DEGREE,
page
223
Problem
number
:
333
Date
solved
:
Tuesday, September 30, 2025 at 09:04:13 AM
CAS
classification
:
[[_homogeneous, `class D`], _Riccati]
ode:=2*x^2*diff(y(x),x) = 2*x*y(x)+(1-x*cot(x))*(x^2-y(x)^2); dsolve(ode,y(x), singsol=all);
ode=2*x^2*D[y[x],x]==2*x*y[x]+(1-x*Cot[x])*(x^2-y[x]^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*Derivative(y(x), x) - 2*x*y(x) - (x**2 - y(x)**2)*(-x/tan(x) + 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out