23.1.351 problem 337

Internal problem ID [4958]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 337
Date solved : Tuesday, September 30, 2025 at 09:05:43 AM
CAS classification : [_linear]

\begin{align*} 2 x \left (1-x \right ) y^{\prime }+x +\left (1-2 x \right ) y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 45
ode:=2*x*(1-x)*diff(y(x),x)+x+(1-2*x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {2 \sqrt {x \left (-1+x \right )}-\ln \left (2\right )+\ln \left (-1+2 x +2 \sqrt {x \left (-1+x \right )}\right )+4 c_1}{4 \sqrt {x \left (-1+x \right )}} \]
Mathematica. Time used: 0.076 (sec). Leaf size: 87
ode=2*x*(1-x)*D[y[x],x]+x+(1-2*x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \exp \left (\int _1^x\frac {1-2 K[1]}{2 (K[1]-1) K[1]}dK[1]\right ) \left (\int _1^x\frac {\exp \left (-\int _1^{K[2]}\frac {1-2 K[1]}{2 (K[1]-1) K[1]}dK[1]\right )}{2 (K[2]-1)}dK[2]+c_1\right ) \end{align*}
Sympy. Time used: 1.386 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*(1 - x)*Derivative(y(x), x) + x + (1 - 2*x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{\sqrt {x \left (x - 1\right )}} + \frac {1}{2} + \frac {\log {\left (2 x + 2 \sqrt {x \left (x - 1\right )} - 1 \right )}}{4 \sqrt {x \left (x - 1\right )}} \]