Internal
problem
ID
[5004]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
1.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
FIRST
DEGREE,
page
223
Problem
number
:
382
Date
solved
:
Tuesday, September 30, 2025 at 11:20:09 AM
CAS
classification
:
[[_homogeneous, `class D`], _rational, _Riccati]
ode:=x*(-x^4+1)*diff(y(x),x) = 2*x*(x^2-y(x)^2)+(-x^4+1)*y(x); dsolve(ode,y(x), singsol=all);
ode=x*(1-x^4)*D[y[x],x]==2*x*(x^2-y[x]^2)+(1-x^4)*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(1 - x**4)*Derivative(y(x), x) - 2*x*(x**2 - y(x)**2) - (1 - x**4)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)