Internal
problem
ID
[5026]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
1.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
FIRST
DEGREE,
page
223
Problem
number
:
408
Date
solved
:
Tuesday, September 30, 2025 at 11:27:22 AM
CAS
classification
:
[_separable]
ode:=diff(y(x),x)*(b*x^4+a*x^2+1)^(1/2)+(1+a*y(x)^2+b*y(x)^4)^(1/2) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]*Sqrt[1+a*x^2+b*x^4]+Sqrt[1+a*y[x]^2+b*y[x]^4]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(sqrt(a*x**2 + b*x**4 + 1)*Derivative(y(x), x) + sqrt(a*y(x)**2 + b*y(x)**4 + 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)