23.1.438 problem 428

Internal problem ID [5045]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 428
Date solved : Tuesday, September 30, 2025 at 11:29:53 AM
CAS classification : [_Bernoulli]

\begin{align*} y y^{\prime }&=b \cos \left (x +c \right )+a y^{2} \end{align*}
Maple. Time used: 0.011 (sec). Leaf size: 106
ode:=y(x)*diff(y(x),x) = b*cos(x+c)+a*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {16 \left (a^{2}+\frac {1}{4}\right )^{2} c_1 \,{\mathrm e}^{2 a x}-16 \left (a^{2}+\frac {1}{4}\right ) \left (a \cos \left (x +c \right )-\frac {\sin \left (x +c \right )}{2}\right ) b}}{4 a^{2}+1} \\ y &= -\frac {\sqrt {16 \left (a^{2}+\frac {1}{4}\right )^{2} c_1 \,{\mathrm e}^{2 a x}-16 \left (a^{2}+\frac {1}{4}\right ) \left (a \cos \left (x +c \right )-\frac {\sin \left (x +c \right )}{2}\right ) b}}{4 a^{2}+1} \\ \end{align*}
Mathematica. Time used: 0.229 (sec). Leaf size: 82
ode=y[x]*D[y[x],x]== b*Cos[x+c]+a*y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -e^{a x} \sqrt {2 \int _1^xb e^{-2 a K[1]} \cos (c+K[1])dK[1]+c_1}\\ y(x)&\to e^{a x} \sqrt {2 \int _1^xb e^{-2 a K[1]} \cos (c+K[1])dK[1]+c_1} \end{align*}
Sympy. Time used: 59.140 (sec). Leaf size: 437
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(-a*y(x)**2 - b*cos(c + x) + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \begin {cases} - \sqrt {C_{1} e^{2 a x} - i b x e^{2 a x + i x} \sin {\left (c + x \right )} + b x e^{2 a x + i x} \cos {\left (c + x \right )} - i b e^{2 a x + i x} \cos {\left (c + x \right )}} & \text {for}\: a = - \frac {i}{2} \\- \sqrt {C_{1} e^{2 a x} + i b x e^{2 a x - i x} \sin {\left (c + x \right )} + b x e^{2 a x - i x} \cos {\left (c + x \right )} + i b e^{2 a x - i x} \cos {\left (c + x \right )}} & \text {for}\: a = \frac {i}{2} \\- \sqrt {\frac {4 C_{1} a^{2} e^{2 a x}}{4 a^{2} + 1} + \frac {C_{1} e^{2 a x}}{4 a^{2} + 1} - \frac {4 a b \cos {\left (c + x \right )}}{4 a^{2} + 1} + \frac {2 b \sin {\left (c + x \right )}}{4 a^{2} + 1}} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} \sqrt {C_{1} e^{2 a x} - i b x e^{2 a x + i x} \sin {\left (c + x \right )} + b x e^{2 a x + i x} \cos {\left (c + x \right )} - i b e^{2 a x + i x} \cos {\left (c + x \right )}} & \text {for}\: a = - \frac {i}{2} \\\sqrt {C_{1} e^{2 a x} + i b x e^{2 a x - i x} \sin {\left (c + x \right )} + b x e^{2 a x - i x} \cos {\left (c + x \right )} + i b e^{2 a x - i x} \cos {\left (c + x \right )}} & \text {for}\: a = \frac {i}{2} \\\sqrt {\frac {4 C_{1} a^{2} e^{2 a x}}{4 a^{2} + 1} + \frac {C_{1} e^{2 a x}}{4 a^{2} + 1} - \frac {4 a b \cos {\left (c + x \right )}}{4 a^{2} + 1} + \frac {2 b \sin {\left (c + x \right )}}{4 a^{2} + 1}} & \text {otherwise} \end {cases}\right ] \]