23.1.454 problem 444

Internal problem ID [5061]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 444
Date solved : Tuesday, September 30, 2025 at 11:30:58 AM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} \left (x -y\right ) y^{\prime }&=\left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y \end{align*}
Maple. Time used: 0.028 (sec). Leaf size: 20
ode:=(x-y(x))*diff(y(x),x) = (exp(-x/y(x))+1)*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {x}{\operatorname {LambertW}\left (\frac {c_1 x}{c_1 x -1}\right )} \]
Mathematica. Time used: 0.718 (sec). Leaf size: 34
ode=(x-y[x])*D[y[x],x]==(Exp[-x/y[x]]+1)*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {x}{W\left (\frac {x}{x-e^{c_1}}\right )}\\ y(x)&\to -\frac {x}{W(1)} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-1 - exp(-x/y(x)))*y(x) + (x - y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded