23.1.458 problem 448

Internal problem ID [5065]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 448
Date solved : Tuesday, September 30, 2025 at 11:31:21 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (3-x +y\right ) y^{\prime }&=11-4 x +3 y \end{align*}
Maple. Time used: 0.076 (sec). Leaf size: 30
ode:=(3-x+y(x))*diff(y(x),x) = 11-4*x+3*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (2 x -5\right ) \operatorname {LambertW}\left (-c_1 \left (x -2\right )\right )+x -2}{\operatorname {LambertW}\left (-c_1 \left (x -2\right )\right )} \]
Mathematica. Time used: 0.065 (sec). Leaf size: 76
ode=(3-x+y[x])*D[y[x],x]==11-4*x+3*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{-\frac {(-1)^{2/3} \left (\frac {6-3 x}{-x+y(x)+3}+2\right )}{\sqrt [3]{2}}}\frac {2}{2 K[1]^3+3 \sqrt [3]{-2} K[1]+2}dK[1]=\frac {1}{9} (-2)^{2/3} \log (x-2)+c_1,y(x)\right ] \]
Sympy. Time used: 0.823 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x + (-x + y(x) + 3)*Derivative(y(x), x) - 3*y(x) - 11,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 2 x + e^{C_{1} + W\left (\left (x - 2\right ) e^{- C_{1}}\right )} - 5 \]