Internal
problem
ID
[5086]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
1.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
FIRST
DEGREE,
page
223
Problem
number
:
469
Date
solved
:
Tuesday, September 30, 2025 at 11:34:27 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=(1+x+2*y(x))*diff(y(x),x)+1-x-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1+x+2*y[x])*D[y[x],x]+1-x-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x + (x + 2*y(x) + 1)*Derivative(y(x), x) - 2*y(x) + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)