23.1.479 problem 469

Internal problem ID [5086]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 469
Date solved : Tuesday, September 30, 2025 at 11:34:27 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (1+x +2 y\right ) y^{\prime }+1-x -2 y&=0 \end{align*}
Maple. Time used: 0.020 (sec). Leaf size: 21
ode:=(1+x+2*y(x))*diff(y(x),x)+1-x-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {x}{2}+\frac {2 \operatorname {LambertW}\left (\frac {c_1 \,{\mathrm e}^{-\frac {1}{4}+\frac {9 x}{4}}}{4}\right )}{3}+\frac {1}{6} \]
Mathematica. Time used: 2.419 (sec). Leaf size: 43
ode=(1+x+2*y[x])*D[y[x],x]+1-x-2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{6} \left (4 W\left (-e^{\frac {9 x}{4}-1+c_1}\right )-3 x+1\right )\\ y(x)&\to \frac {1}{6} (1-3 x) \end{align*}
Sympy. Time used: 2.664 (sec). Leaf size: 129
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + (x + 2*y(x) + 1)*Derivative(y(x), x) - 2*y(x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {x}{2} + \frac {2 W\left (- \frac {\sqrt [4]{C_{1} e^{9 x}}}{4 e^{\frac {1}{4}}}\right )}{3} + \frac {1}{6}, \ y{\left (x \right )} = - \frac {x}{2} + \frac {2 W\left (\frac {\sqrt [4]{C_{1} e^{9 x}}}{4 e^{\frac {1}{4}}}\right )}{3} + \frac {1}{6}, \ y{\left (x \right )} = - \frac {x}{2} + \frac {2 W\left (- \frac {i \sqrt [4]{C_{1} e^{9 x}}}{4 e^{\frac {1}{4}}}\right )}{3} + \frac {1}{6}, \ y{\left (x \right )} = - \frac {x}{2} + \frac {2 W\left (\frac {i \sqrt [4]{C_{1} e^{9 x}}}{4 e^{\frac {1}{4}}}\right )}{3} + \frac {1}{6}\right ] \]