23.1.490 problem 480

Internal problem ID [5097]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 480
Date solved : Tuesday, September 30, 2025 at 11:36:19 AM
CAS classification : [_separable]

\begin{align*} 3 \left (2-y\right ) y^{\prime }+x y&=0 \end{align*}
Maple. Time used: 0.012 (sec). Leaf size: 19
ode:=3*(2-y(x))*diff(y(x),x)+x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -2 \operatorname {LambertW}\left (-\frac {{\mathrm e}^{-\frac {x^{2}}{12}-\frac {c_1}{6}}}{2}\right ) \]
Mathematica. Time used: 0.068 (sec). Leaf size: 39
ode=3*(2-y[x])*D[y[x],x]+x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {K[1]-2}{K[1]}dK[1]\&\right ]\left [\frac {x^2}{6}+c_1\right ]\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 27.086 (sec). Leaf size: 296
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x) + (6 - 3*y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - 2 W\left (- \frac {i \sqrt [12]{C_{1} e^{- x^{2}}}}{2}\right ), \ y{\left (x \right )} = - 2 W\left (\frac {i \sqrt [12]{C_{1} e^{- x^{2}}}}{2}\right ), \ y{\left (x \right )} = - 2 W\left (\frac {\sqrt [12]{C_{1} e^{- x^{2}}} \left (-1 + \sqrt {3} i\right )}{4}\right ), \ y{\left (x \right )} = - 2 W\left (\frac {\sqrt [12]{C_{1} e^{- x^{2}}} \left (1 - \sqrt {3} i\right )}{4}\right ), \ y{\left (x \right )} = - 2 W\left (\frac {\sqrt [12]{C_{1} e^{- x^{2}}} \left (-1 - \sqrt {3} i\right )}{4}\right ), \ y{\left (x \right )} = - 2 W\left (\frac {\sqrt [12]{C_{1} e^{- x^{2}}} \left (1 + \sqrt {3} i\right )}{4}\right ), \ y{\left (x \right )} = - 2 W\left (\frac {\sqrt [12]{C_{1} e^{- x^{2}}} \left (- \sqrt {3} + i\right )}{4}\right ), \ y{\left (x \right )} = - 2 W\left (\frac {\sqrt [12]{C_{1} e^{- x^{2}}} \left (\sqrt {3} - i\right )}{4}\right ), \ y{\left (x \right )} = - 2 W\left (\frac {\sqrt [12]{C_{1} e^{- x^{2}}} \left (- \sqrt {3} - i\right )}{4}\right ), \ y{\left (x \right )} = - 2 W\left (\frac {\sqrt [12]{C_{1} e^{- x^{2}}} \left (\sqrt {3} + i\right )}{4}\right ), \ y{\left (x \right )} = - 2 W\left (- \frac {\sqrt [12]{C_{1} e^{- x^{2}}}}{2}\right ), \ y{\left (x \right )} = - 2 W\left (\frac {\sqrt [12]{C_{1} e^{- x^{2}}}}{2}\right )\right ] \]