23.1.494 problem 484

Internal problem ID [5101]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 484
Date solved : Tuesday, September 30, 2025 at 11:37:11 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (5-2 x -3 y\right ) y^{\prime }+1-2 x -3 y&=0 \end{align*}
Maple. Time used: 0.019 (sec). Leaf size: 21
ode:=(5-2*x-3*y(x))*diff(y(x),x)+1-2*x-3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {2 x}{3}-4 \operatorname {LambertW}\left (-\frac {c_1 \,{\mathrm e}^{-\frac {7}{12}+\frac {x}{12}}}{12}\right )-\frac {7}{3} \]
Mathematica. Time used: 2.183 (sec). Leaf size: 43
ode=(5-2*x-3*y[x])*D[y[x],x]+1-2*x -3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -4 W\left (-e^{\frac {x}{12}-1+c_1}\right )-\frac {2 x}{3}-\frac {7}{3}\\ y(x)&\to \frac {1}{3} (-2 x-7) \end{align*}
Sympy. Time used: 23.580 (sec). Leaf size: 442
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x + (-2*x - 3*y(x) + 5)*Derivative(y(x), x) - 3*y(x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {2 x}{3} - 4 W\left (- \frac {\sqrt [12]{C_{1} e^{x}}}{12 e^{\frac {7}{12}}}\right ) - \frac {7}{3}, \ y{\left (x \right )} = - \frac {2 x}{3} - 4 W\left (\frac {\sqrt [12]{C_{1} e^{x}}}{12 e^{\frac {7}{12}}}\right ) - \frac {7}{3}, \ y{\left (x \right )} = - \frac {2 x}{3} - 4 W\left (- \frac {i \sqrt [12]{C_{1} e^{x}}}{12 e^{\frac {7}{12}}}\right ) - \frac {7}{3}, \ y{\left (x \right )} = - \frac {2 x}{3} - 4 W\left (\frac {i \sqrt [12]{C_{1} e^{x}}}{12 e^{\frac {7}{12}}}\right ) - \frac {7}{3}, \ y{\left (x \right )} = - \frac {2 x}{3} - 4 W\left (- \frac {\sqrt [12]{C_{1} e^{x}} \left (1 - \sqrt {3} i\right )}{24 e^{\frac {7}{12}}}\right ) - \frac {7}{3}, \ y{\left (x \right )} = - \frac {2 x}{3} - 4 W\left (\frac {\sqrt [12]{C_{1} e^{x}} \left (1 - \sqrt {3} i\right )}{24 e^{\frac {7}{12}}}\right ) - \frac {7}{3}, \ y{\left (x \right )} = - \frac {2 x}{3} - 4 W\left (- \frac {\sqrt [12]{C_{1} e^{x}} \left (1 + \sqrt {3} i\right )}{24 e^{\frac {7}{12}}}\right ) - \frac {7}{3}, \ y{\left (x \right )} = - \frac {2 x}{3} - 4 W\left (\frac {\sqrt [12]{C_{1} e^{x}} \left (1 + \sqrt {3} i\right )}{24 e^{\frac {7}{12}}}\right ) - \frac {7}{3}, \ y{\left (x \right )} = - \frac {2 x}{3} - 4 W\left (- \frac {\sqrt [12]{C_{1} e^{x}} \left (\sqrt {3} - i\right )}{24 e^{\frac {7}{12}}}\right ) - \frac {7}{3}, \ y{\left (x \right )} = - \frac {2 x}{3} - 4 W\left (\frac {\sqrt [12]{C_{1} e^{x}} \left (\sqrt {3} - i\right )}{24 e^{\frac {7}{12}}}\right ) - \frac {7}{3}, \ y{\left (x \right )} = - \frac {2 x}{3} - 4 W\left (- \frac {\sqrt [12]{C_{1} e^{x}} \left (\sqrt {3} + i\right )}{24 e^{\frac {7}{12}}}\right ) - \frac {7}{3}, \ y{\left (x \right )} = - \frac {2 x}{3} - 4 W\left (\frac {\sqrt [12]{C_{1} e^{x}} \left (\sqrt {3} + i\right )}{24 e^{\frac {7}{12}}}\right ) - \frac {7}{3}\right ] \]