23.1.508 problem 498

Internal problem ID [5115]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 498
Date solved : Tuesday, September 30, 2025 at 11:40:46 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (1+x +9 y\right ) y^{\prime }+1+x +5 y&=0 \end{align*}
Maple. Time used: 0.077 (sec). Leaf size: 29
ode:=(1+x+9*y(x))*diff(y(x),x)+1+x+5*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\left (x +1\right ) \left (2+3 \operatorname {LambertW}\left (\frac {2 c_1 \left (x +1\right )}{3}\right )\right )}{9 \operatorname {LambertW}\left (\frac {2 c_1 \left (x +1\right )}{3}\right )} \]
Mathematica. Time used: 0.105 (sec). Leaf size: 72
ode=(1+x+9*y[x])*D[y[x],x]+1+x+5*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{-\frac {(-2)^{2/3} (4 x+9 y(x)+4)}{x+9 y(x)+1}}\frac {2}{2 K[1]^3+3 \sqrt [3]{-2} K[1]+2}dK[1]=\frac {1}{9} (-2)^{2/3} \log (x+1)+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x + (x + 9*y(x) + 1)*Derivative(y(x), x) + 5*y(x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded