23.1.563 problem 553

Internal problem ID [5170]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 553
Date solved : Tuesday, September 30, 2025 at 11:48:47 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x \left (1+x -2 y\right ) y^{\prime }+\left (1-2 x +y\right ) y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 385
ode:=x*(1+x-2*y(x))*diff(y(x),x)+(1-2*x+y(x))*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {3 \,5^{{1}/{3}} {\left (x \left (\sqrt {5}\, \sqrt {\frac {80 c_1 \,x^{2}+160 c_1 x +80 c_1 -x}{c_1}}-20 x -20\right ) c_1^{2}\right )}^{{1}/{3}}}{40 c_1}+\frac {3 x 5^{{2}/{3}}}{40 {\left (x \left (\sqrt {5}\, \sqrt {\frac {80 c_1 \,x^{2}+160 c_1 x +80 c_1 -x}{c_1}}-20 x -20\right ) c_1^{2}\right )}^{{1}/{3}}}-x -1 \\ y &= \frac {\frac {3 \left (-i \sqrt {3}-1\right ) 5^{{1}/{3}} \left (-20 c_1^{2} \left (-\frac {\sqrt {5}\, \sqrt {\frac {80 \left (x +1\right )^{2} c_1 -x}{c_1}}}{20}+x +1\right ) x \right )^{{2}/{3}}}{80}+\frac {3 \left (-\frac {80 \left (x +1\right ) \left (-20 c_1^{2} \left (-\frac {\sqrt {5}\, \sqrt {\frac {80 \left (x +1\right )^{2} c_1 -x}{c_1}}}{20}+x +1\right ) x \right )^{{1}/{3}}}{3}+\left (i \sqrt {3}-1\right ) 5^{{2}/{3}} x \right ) c_1}{80}}{\left (-20 c_1^{2} \left (-\frac {\sqrt {5}\, \sqrt {\frac {80 \left (x +1\right )^{2} c_1 -x}{c_1}}}{20}+x +1\right ) x \right )^{{1}/{3}} c_1} \\ y &= \frac {\frac {3 \left (i \sqrt {3}-1\right ) 5^{{1}/{3}} \left (-20 c_1^{2} \left (-\frac {\sqrt {5}\, \sqrt {\frac {80 \left (x +1\right )^{2} c_1 -x}{c_1}}}{20}+x +1\right ) x \right )^{{2}/{3}}}{80}+\frac {3 \left (-\frac {80 \left (x +1\right ) \left (-20 c_1^{2} \left (-\frac {\sqrt {5}\, \sqrt {\frac {80 \left (x +1\right )^{2} c_1 -x}{c_1}}}{20}+x +1\right ) x \right )^{{1}/{3}}}{3}+\left (-i \sqrt {3}-1\right ) 5^{{2}/{3}} x \right ) c_1}{80}}{\left (-20 c_1^{2} \left (-\frac {\sqrt {5}\, \sqrt {\frac {80 \left (x +1\right )^{2} c_1 -x}{c_1}}}{20}+x +1\right ) x \right )^{{1}/{3}} c_1} \\ \end{align*}
Mathematica. Time used: 7.857 (sec). Leaf size: 126
ode=x*(1+x-2*y[x])*D[y[x],x]+(1-2*x+y[x])*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x-\frac {\sqrt [3]{2} 5^{2/3} \left (-(K[2]-1)^3\right )^{2/3}}{27 K[2]-27 K[2]^3}dK[2]+c_1=\int _1^{\frac {(x-1) (5 x+8 y(x)+5)}{2^{2/3} \sqrt [3]{5} \sqrt [3]{-(x-1)^3} (x-2 y(x)+1)}}\frac {1}{K[1]^3+\frac {21 \sqrt [3]{-\frac {1}{2}} K[1]}{2\ 5^{2/3}}+1}dK[1],y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x - 2*y(x) + 1)*Derivative(y(x), x) + (-2*x + y(x) + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out