23.1.576 problem 569

Internal problem ID [5183]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 569
Date solved : Sunday, October 12, 2025 at 01:22:11 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} \left (1-x^{2} y\right ) y^{\prime }-1+x y^{2}&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 951
ode:=(1-x^2*y(x))*diff(y(x),x)-1+x*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}
Mathematica. Time used: 6.807 (sec). Leaf size: 127
ode=(1-x^2*y[x])*D[y[x],x]-1+x*y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x\frac {2 \sqrt [3]{2} 5^{2/3} \left (-\frac {1}{K[2]^3}\right )^{2/3} K[2]}{9 \left (K[2]^3-1\right )}dK[2]+c_1=\int _1^{\frac {3 x^3-4 y(x) x^2+1}{2^{2/3} \sqrt [3]{5} \sqrt [3]{-\frac {1}{x^3}} x \left (x^2 y(x)-1\right )}}\frac {1}{K[1]^3+\frac {21 \sqrt [3]{-\frac {1}{2}} K[1]}{2\ 5^{2/3}}+1}dK[1],y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)**2 + (-x**2*y(x) + 1)*Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out