Internal
problem
ID
[5204]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
1.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
FIRST
DEGREE,
page
223
Problem
number
:
590
Date
solved
:
Tuesday, September 30, 2025 at 11:54:55 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=8*x^3*y(x)*diff(y(x),x)+3*x^4-6*x^2*y(x)^2-y(x)^4 = 0; dsolve(ode,y(x), singsol=all);
ode=8*x^3*y[x]*D[y[x],x]+3*x^4 -6*x^2*y[x]^2 -y[x]^4==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**4 + 8*x**3*y(x)*Derivative(y(x), x) - 6*x**2*y(x)**2 - y(x)**4,0) ics = {} dsolve(ode,func=y(x),ics=ics)