23.1.601 problem 594

Internal problem ID [5208]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 594
Date solved : Tuesday, September 30, 2025 at 11:55:44 AM
CAS classification : [_separable]

\begin{align*} y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}}&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 20
ode:=y(x)*diff(y(x),x)*(x^2+1)^(1/2)+x*(1+y(x)^2)^(1/2) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \sqrt {x^{2}+1}+\sqrt {1+y^{2}}+c_1 = 0 \]
Mathematica. Time used: 0.188 (sec). Leaf size: 75
ode=y[x]*D[y[x],x]*Sqrt[1+x^2]+x*Sqrt[1+y[x]^2]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\sqrt {x^2+c_1 \left (-2 \sqrt {x^2+1}+c_1\right )}\\ y(x)&\to \sqrt {x^2+c_1 \left (-2 \sqrt {x^2+1}+c_1\right )}\\ y(x)&\to -i\\ y(x)&\to i \end{align*}
Sympy. Time used: 0.739 (sec). Leaf size: 49
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*sqrt(y(x)**2 + 1) + sqrt(x**2 + 1)*y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1}^{2} - 2 C_{1} \sqrt {x^{2} + 1} + x^{2}}, \ y{\left (x \right )} = \sqrt {C_{1}^{2} - 2 C_{1} \sqrt {x^{2} + 1} + x^{2}}\right ] \]