23.1.607 problem 601

Internal problem ID [5214]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 601
Date solved : Tuesday, September 30, 2025 at 11:55:56 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime }+x y&=0 \end{align*}
Maple. Time used: 0.158 (sec). Leaf size: 115
ode:=(x^2+y(x)^2)*diff(y(x),x)+x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {-c_1 \,x^{2}-\sqrt {c_1^{2} x^{4}+1}}}{\sqrt {c_1}} \\ y &= \frac {\sqrt {-c_1 \,x^{2}+\sqrt {c_1^{2} x^{4}+1}}}{\sqrt {c_1}} \\ y &= -\frac {\sqrt {-c_1 \,x^{2}-\sqrt {c_1^{2} x^{4}+1}}}{\sqrt {c_1}} \\ y &= -\frac {\sqrt {-c_1 \,x^{2}+\sqrt {c_1^{2} x^{4}+1}}}{\sqrt {c_1}} \\ \end{align*}
Mathematica. Time used: 6.901 (sec). Leaf size: 218
ode=(x^2+y[x]^2)*D[y[x],x]+x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\sqrt {-x^2-\sqrt {x^4+e^{4 c_1}}}\\ y(x)&\to \sqrt {-x^2-\sqrt {x^4+e^{4 c_1}}}\\ y(x)&\to -\sqrt {-x^2+\sqrt {x^4+e^{4 c_1}}}\\ y(x)&\to \sqrt {-x^2+\sqrt {x^4+e^{4 c_1}}}\\ y(x)&\to 0\\ y(x)&\to -\sqrt {-\sqrt {x^4}-x^2}\\ y(x)&\to \sqrt {-\sqrt {x^4}-x^2}\\ y(x)&\to -\sqrt {\sqrt {x^4}-x^2}\\ y(x)&\to \sqrt {\sqrt {x^4}-x^2} \end{align*}
Sympy. Time used: 2.352 (sec). Leaf size: 75
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x) + (x**2 + y(x)**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {- x^{2} - \sqrt {C_{1} + x^{4}}}, \ y{\left (x \right )} = \sqrt {- x^{2} - \sqrt {C_{1} + x^{4}}}, \ y{\left (x \right )} = - \sqrt {- x^{2} + \sqrt {C_{1} + x^{4}}}, \ y{\left (x \right )} = \sqrt {- x^{2} + \sqrt {C_{1} + x^{4}}}\right ] \]