23.1.609 problem 603

Internal problem ID [5216]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 603
Date solved : Tuesday, September 30, 2025 at 11:56:03 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (x^{2}-y^{2}\right ) y^{\prime }&=2 x y \end{align*}
Maple. Time used: 0.055 (sec). Leaf size: 47
ode:=(x^2-y(x)^2)*diff(y(x),x) = 2*x*y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {1-\sqrt {-4 c_1^{2} x^{2}+1}}{2 c_1} \\ y &= \frac {1+\sqrt {-4 c_1^{2} x^{2}+1}}{2 c_1} \\ \end{align*}
Mathematica. Time used: 0.57 (sec). Leaf size: 66
ode=(x^2-y[x]^2)*D[y[x],x]==2*x*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \left (e^{c_1}-\sqrt {-4 x^2+e^{2 c_1}}\right )\\ y(x)&\to \frac {1}{2} \left (\sqrt {-4 x^2+e^{2 c_1}}+e^{c_1}\right )\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.984 (sec). Leaf size: 44
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x) + (x**2 - y(x)**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {- 4 x^{2} + e^{2 C_{1}}}}{2} + \frac {e^{C_{1}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {- 4 x^{2} + e^{2 C_{1}}}}{2} + \frac {e^{C_{1}}}{2}\right ] \]