23.1.635 problem 629

Internal problem ID [5242]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 629
Date solved : Tuesday, September 30, 2025 at 11:59:51 AM
CAS classification : [_exact, _rational]

\begin{align*} \left (x^{2}-3 y^{2}\right ) y^{\prime }+1+2 x y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 294
ode:=(x^2-3*y(x)^2)*diff(y(x),x)+1+2*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (108 c_1 +108 x +12 \sqrt {-12 x^{6}+81 c_1^{2}+162 c_1 x +81 x^{2}}\right )^{{2}/{3}}+12 x^{2}}{6 \left (108 c_1 +108 x +12 \sqrt {-12 x^{6}+81 c_1^{2}+162 c_1 x +81 x^{2}}\right )^{{1}/{3}}} \\ y &= \frac {-i \sqrt {3}\, \left (108 c_1 +108 x +12 \sqrt {-12 x^{6}+81 c_1^{2}+162 c_1 x +81 x^{2}}\right )^{{2}/{3}}+12 i \sqrt {3}\, x^{2}-\left (108 c_1 +108 x +12 \sqrt {-12 x^{6}+81 c_1^{2}+162 c_1 x +81 x^{2}}\right )^{{2}/{3}}-12 x^{2}}{12 \left (108 c_1 +108 x +12 \sqrt {-12 x^{6}+81 c_1^{2}+162 c_1 x +81 x^{2}}\right )^{{1}/{3}}} \\ y &= \frac {\left (108 c_1 +108 x +12 \sqrt {-12 x^{6}+81 c_1^{2}+162 c_1 x +81 x^{2}}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right )}{12}-\frac {\left (1+i \sqrt {3}\right ) x^{2}}{\left (108 c_1 +108 x +12 \sqrt {-12 x^{6}+81 c_1^{2}+162 c_1 x +81 x^{2}}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 4.248 (sec). Leaf size: 307
ode=(x^2-3*y[x]^2)*D[y[x],x]+1+2*x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {\sqrt [3]{\sqrt {-108 x^6+729 (x-c_1){}^2}-27 x+27 c_1}}{3 \sqrt [3]{2}}-\frac {\sqrt [3]{2} x^2}{\sqrt [3]{\sqrt {-108 x^6+729 (x-c_1){}^2}-27 x+27 c_1}}\\ y(x)&\to \frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{\sqrt {-108 x^6+729 (x-c_1){}^2}-27 x+27 c_1}}{6 \sqrt [3]{2}}+\frac {\left (1+i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{\sqrt {-108 x^6+729 (x-c_1){}^2}-27 x+27 c_1}}\\ y(x)&\to \frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{\sqrt {-108 x^6+729 (x-c_1){}^2}-27 x+27 c_1}}{6 \sqrt [3]{2}}+\frac {\left (1-i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{\sqrt {-108 x^6+729 (x-c_1){}^2}-27 x+27 c_1}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x) + (x**2 - 3*y(x)**2)*Derivative(y(x), x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out