23.1.639 problem 633

Internal problem ID [5246]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 633
Date solved : Tuesday, September 30, 2025 at 12:00:06 PM
CAS classification : [[_homogeneous, `class C`], _rational]

\begin{align*} \left (1-3 x +2 y\right )^{2} y^{\prime }&=\left (4+2 x -3 y\right )^{2} \end{align*}
Maple. Time used: 1.603 (sec). Leaf size: 1337
ode:=(1-3*x+2*y(x))^2*diff(y(x),x) = (4+2*x-3*y(x))^2; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {Expression too large to display} \]
Mathematica. Time used: 60.136 (sec). Leaf size: 3501
ode=(1-3*x+2*y[x])^2*D[y[x],x]==(4+2*x-3*y[x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-3*x + 2*y(x) + 1)**2*Derivative(y(x), x) - (2*x - 3*y(x) + 4)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out