Internal
problem
ID
[5275]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
1.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
FIRST
DEGREE,
page
223
Problem
number
:
663
Date
solved
:
Tuesday, September 30, 2025 at 12:06:28 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x*(x^2-6*y(x)^2)*diff(y(x),x) = 4*(x^2+3*y(x)^2)*y(x); dsolve(ode,y(x), singsol=all);
ode=x(x^2-6 y[x]^2)D[y[x],x]==4(x^2+3 y[x]^2)y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**2 - 6*y(x)**2)*Derivative(y(x), x) - (4*x**2 + 12*y(x)**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)