23.1.684 problem 679

Internal problem ID [5291]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 679
Date solved : Tuesday, September 30, 2025 at 12:07:32 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y&=0 \end{align*}
Maple. Time used: 0.216 (sec). Leaf size: 199
ode:=(x^3-y(x)^3)*diff(y(x),x)+x^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (c_1 \,x^{3}-\sqrt {c_1^{2} x^{6}+1}\right )^{{1}/{3}}}{c_1^{{1}/{3}}} \\ y &= \frac {\left (c_1 \,x^{3}+\sqrt {c_1^{2} x^{6}+1}\right )^{{1}/{3}}}{c_1^{{1}/{3}}} \\ y &= -\frac {\left (c_1 \,x^{3}-\sqrt {c_1^{2} x^{6}+1}\right )^{{1}/{3}} \left (1+i \sqrt {3}\right )}{2 c_1^{{1}/{3}}} \\ y &= \frac {\left (c_1 \,x^{3}-\sqrt {c_1^{2} x^{6}+1}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right )}{2 c_1^{{1}/{3}}} \\ y &= -\frac {\left (c_1 \,x^{3}+\sqrt {c_1^{2} x^{6}+1}\right )^{{1}/{3}} \left (1+i \sqrt {3}\right )}{2 c_1^{{1}/{3}}} \\ y &= \frac {\left (c_1 \,x^{3}+\sqrt {c_1^{2} x^{6}+1}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right )}{2 c_1^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 5.113 (sec). Leaf size: 352
ode=(x^3-y[x]^3)D[y[x],x]+x^2 y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sqrt [3]{x^3-\sqrt {x^6-e^{6 c_1}}}\\ y(x)&\to -\sqrt [3]{-1} \sqrt [3]{x^3-\sqrt {x^6-e^{6 c_1}}}\\ y(x)&\to (-1)^{2/3} \sqrt [3]{x^3-\sqrt {x^6-e^{6 c_1}}}\\ y(x)&\to \sqrt [3]{x^3+\sqrt {x^6-e^{6 c_1}}}\\ y(x)&\to -\sqrt [3]{-1} \sqrt [3]{x^3+\sqrt {x^6-e^{6 c_1}}}\\ y(x)&\to (-1)^{2/3} \sqrt [3]{x^3+\sqrt {x^6-e^{6 c_1}}}\\ y(x)&\to 0\\ y(x)&\to \sqrt [3]{x^3-\sqrt {x^6}}\\ y(x)&\to -\sqrt [3]{-1} \sqrt [3]{x^3-\sqrt {x^6}}\\ y(x)&\to (-1)^{2/3} \sqrt [3]{x^3-\sqrt {x^6}}\\ y(x)&\to \sqrt [3]{\sqrt {x^6}+x^3}\\ y(x)&\to -\sqrt [3]{-1} \sqrt [3]{\sqrt {x^6}+x^3}\\ y(x)&\to (-1)^{2/3} \sqrt [3]{\sqrt {x^6}+x^3} \end{align*}
Sympy. Time used: 7.559 (sec). Leaf size: 146
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*y(x) + (x**3 - y(x)**3)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{x^{3} - \sqrt {C_{1} + x^{6}}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{x^{3} + \sqrt {C_{1} + x^{6}}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{x^{3} - \sqrt {C_{1} + x^{6}}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{x^{3} + \sqrt {C_{1} + x^{6}}}}{2}, \ y{\left (x \right )} = \sqrt [3]{x^{3} - \sqrt {C_{1} + x^{6}}}, \ y{\left (x \right )} = \sqrt [3]{x^{3} + \sqrt {C_{1} + x^{6}}}\right ] \]