Internal
problem
ID
[5300]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
1.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
FIRST
DEGREE,
page
223
Problem
number
:
688
Date
solved
:
Tuesday, September 30, 2025 at 12:19:20 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=(3*x^2+2*y(x)^2)*y(x)*diff(y(x),x)+x^3 = 0; dsolve(ode,y(x), singsol=all);
ode=(3*x^2+2*y[x]^2)*y[x]*D[y[x],x]+x^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3 + (3*x**2 + 2*y(x)**2)*y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)