Internal
problem
ID
[5375]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
20
Date
solved
:
Tuesday, September 30, 2025 at 12:38:13 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
ode:=diff(y(x),x)^2+f(x)*(y(x)-a)*(y(x)-b)*(y(x)-c) = 0; dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x])^2+f[x]*(y[x]-a)(y[x]-b)*(y[x]-c)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") f = Function("f") ode = Eq((-a + y(x))*(-b + y(x))*(-c + y(x))*f(x) + Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)