23.2.34 problem 35

Internal problem ID [5389]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 2. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF SECOND OR HIGHER DEGREE, page 278
Problem number : 35
Date solved : Tuesday, September 30, 2025 at 12:39:44 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Clairaut]

\begin{align*} {y^{\prime }}^{2}-x y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.031 (sec). Leaf size: 19
ode:=diff(y(x),x)^2-x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x^{2}}{4} \\ y &= c_1 \left (-c_1 +x \right ) \\ \end{align*}
Mathematica. Time used: 0.004 (sec). Leaf size: 25
ode=(D[y[x],x])^2-x*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 (x-c_1)\\ y(x)&\to \frac {x^2}{4} \end{align*}
Sympy. Time used: 1.162 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + y(x) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{2}}{4} - \frac {\left (C_{1} + x\right )^{2}}{4} \]