Internal
problem
ID
[5412]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
59
Date
solved
:
Tuesday, September 30, 2025 at 12:40:00 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=diff(y(x),x)^2+4*x^5*diff(y(x),x)-12*x^4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x])^2+4*x^5*D[y[x],x]-12*x^4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**5*Derivative(y(x), x) - 12*x**4*y(x) + Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)