23.2.88 problem 90

Internal problem ID [5443]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 2. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF SECOND OR HIGHER DEGREE, page 278
Problem number : 90
Date solved : Tuesday, September 30, 2025 at 12:43:26 PM
CAS classification : [_quadrature]

\begin{align*} 4 {y^{\prime }}^{2}&=9 x \end{align*}
Maple. Time used: 0.010 (sec). Leaf size: 19
ode:=4*diff(y(x),x)^2 = 9*x; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -x^{{3}/{2}}+c_1 \\ y &= x^{{3}/{2}}+c_1 \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 27
ode=4 (D[y[x],x])^2==9 x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x^{3/2}+c_1\\ y(x)&\to x^{3/2}+c_1 \end{align*}
Sympy. Time used: 0.203 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-9*x + 4*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - x^{\frac {3}{2}}, \ y{\left (x \right )} = C_{1} + x^{\frac {3}{2}}\right ] \]