23.2.110 problem 112

Internal problem ID [5465]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 2. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF SECOND OR HIGHER DEGREE, page 278
Problem number : 112
Date solved : Tuesday, September 30, 2025 at 12:44:00 PM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} x {y^{\prime }}^{2}+y y^{\prime }-y^{4}&=0 \end{align*}
Maple. Time used: 0.132 (sec). Leaf size: 89
ode:=x*diff(y(x),x)^2+y(x)*diff(y(x),x)-y(x)^4 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {1}{2 \sqrt {-x}} \\ y &= \frac {1}{2 \sqrt {-x}} \\ y &= 0 \\ y &= -\frac {\sqrt {x \operatorname {sech}\left (-\frac {\ln \left (x \right )}{2}+\frac {c_1}{2}\right )^{2}}\, \coth \left (-\frac {\ln \left (x \right )}{2}+\frac {c_1}{2}\right )}{2 x} \\ y &= \frac {\sqrt {x \operatorname {sech}\left (-\frac {\ln \left (x \right )}{2}+\frac {c_1}{2}\right )^{2}}\, \coth \left (-\frac {\ln \left (x \right )}{2}+\frac {c_1}{2}\right )}{2 x} \\ \end{align*}
Mathematica. Time used: 0.306 (sec). Leaf size: 84
ode=x (D[y[x],x])^2+y[x] D[y[x],x]-y[x]^4==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {2 e^{\frac {c_1}{2}}}{-4 x+e^{c_1}}\\ y(x)&\to \frac {2 e^{\frac {c_1}{2}}}{-4 x+e^{c_1}}\\ y(x)&\to 0\\ y(x)&\to -\frac {i}{2 \sqrt {x}}\\ y(x)&\to \frac {i}{2 \sqrt {x}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 - y(x)**4 + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out