23.2.121 problem 123

Internal problem ID [5476]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 2. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF SECOND OR HIGHER DEGREE, page 278
Problem number : 123
Date solved : Tuesday, September 30, 2025 at 12:44:29 PM
CAS classification : [_quadrature]

\begin{align*} x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=x*diff(y(x),x)^2-(2*x+3*y(x))*diff(y(x),x)+6*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= c_1 \,x^{3} \\ y &= 2 x +c_1 \\ \end{align*}
Mathematica. Time used: 0.025 (sec). Leaf size: 26
ode=x (D[y[x],x])^2-(2 x+3 y[x])D[y[x],x]+6 y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 x^3\\ y(x)&\to 2 x+c_1\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.085 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 - (2*x + 3*y(x))*Derivative(y(x), x) + 6*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} + 2 x, \ y{\left (x \right )} = C_{1} x^{3}\right ] \]